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This paper gives a description of an algorithm proposed by Mushtari for 

the solution of systems of nonlinear algebraic equations for nonlinear 

problems of the theory of shallow shells. 

This algorithm may also be applied in the study of finite bending of 

shallow cylindrical panels of rectangular planform with simply supported 

edges under the influence of uniformly distributed loading. The problem 

may be solved by the Bubnov-Galerkin method for the integration of the 

strain compatibility and equilibrium equations. The expressions selected 

for the stress and flexure functions satisfy all the static and geometric 

boundary conditions at every point of the boundary (Section 1 is written 

by Mushtari, Sections 2-3 by Kornishin). The numerical work has been per- 

formed on the electronic computer “Strela” of the Computing Center of the 

Academy of Sciences of the USSR by means of a program composed by Skvort- 

SOY, to whom the authors express their gratirude. 

1. A method for the approximate solution of problems of the theory of 

average bending of elastic shallow shells. The basic equations of the non- 

linear theory of very shallow shells of rectangular planform, and also of 

shallow cylindrical shells, may be reduced to the form 

Here t is the thickness, E Young’s modulus, v Poisson’s ratio of the 

material of the shell, kl, k2 are the principal curvatures of the middle 

surface before deformation. w is the deflection, assumed positive on the 

side of the internal normal, p is the static pressure per unit area, 
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T T12* 1’ 
T2 are the membrane forces 

I’ =c* 
I i)y” I 

7’,, = _ _i,Y 
dxdy’ 

AL?+“” 
dxL dy’ 

For the solution of these nonlinear equations by the method of 

successive approximations, as a first approximation we apply the solution 

of the corresponding linear problem, and determine the second approxima- 

tion by solving the equations obtained from (1.1) and (1.2) after re- 

placement of the nonlinear terms by the values of w and $ calculated from 

the first approximation, etc. For this purpose we have to solve repeat- 

edly a system of linear differential equations for given boundary condi- 

tions, which in itself presents great difficulties. In addition, there 

still remains the vague problem of the region of convergence and 

especially the question of the rate of convergence of the process. 

It therefore appeared preferable to integrate equations (1.1) and 

(1.2) by the Bubnov-Galerkin method, approximating the unknown functions 

by series of the form 

where fij, $ij are functions of x and y, satisfying the corresponding 

boundary conditions. 

Multiplying (1.1) by fij, (1.2) by 4;. and integrating over the Plane 

of the panel, we obtain a system of alge L . raic equations to determine 

amplitudes wij and ‘;‘li. of the deflections and stress function. Since the 

IJJ. enter linearly, t h 

ht%ever, 

eir expressions may be found in terms of wij (which, 

is not essential). We thus obtain the system of cubic equations 

for the wij 

2 /lij%ij + F?” (Wij) == lI,,p (01 ~= ;I, 2, .) (1.4) 

ij 

where Fm(wij) are the nonlinear parts of the corresponding equations and 

the Aijm and Bm have known numerical values. 

In the general case, for any realistic number of terms of the series 

(1.3) the solution of this system leads to very involved computations, 

the execution of which even when using a high-speed computer demands a 

considerable amount of machine time. In addition, it is extremely labor- 

ious to construct the Bubnov-Galerkin equations and program their solution 

for the machine. Taking these facts into consideration, it was decided to 

limit the range of problems to be solved to “average bending”, when the 

deflections do not become too large, i.e. not exceeding 1.5 to 2 times 

the thickness of the shell. In this case, if in the solution of the 
linear problem only a small number of the amplitudes of the principal 
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harmonics are dominant, and if the remaining harmonics influence the 

magnitude of the stresses only slightly, so that not only series (1.3) 

but also the series for d2~/dx2, . . . converge well, for the solution of 

the nonlinear problems satisfactory convergence of these series may be 

obtained, In paper [l I it has been shown that it is admissible to 

linearize the stated equations with respect to the nondominant ampli- 

tudes and to estimate the accuracy obtained. Here, with the object of 

expanding the area of applicability and of defining error estimates of a 

simplified method of solution, equations (1.4) will not be linearized, 

but the following approximate method of solution will be proposed instead. 

To explain the idea of the method, consider a problem in the solution 

of which one term of the series for w with amplitude wi2 plays the 

principal role. Let it be required to construct a table of values of mij 

(and also of the deflections and membrane stresses) for a number of 

values of loading p. Instead, the consecutive values of 1 wll 1 , beginning 

with its small values, will be given, for example beginning with ( w 

0.1 t. For this value of j wll j 
111 = 

the magnitudes of the other pplitudes 

“i2’ ‘B21’ .*.. will differ only slightly from the value vij of the 

linear theory. Therefore, if in the expressions Pm(mij) the term / ~~~ ] 
is replaced by F. 1 t and in the remaining nonlinear terms the w.. are 

replaced by wij , the errors incurred in the Fm will be very sma 1; since “i 

these nonlinear terms are small compared with the linear terms, from the 

system of linear equations obtained the corresponding quantity p and the 

remaining (n - 1) amplitudes (if one limits consideration to n terms of 

the series approximating tv) are found to a high degree of accuracy. Sub- 

stituting next in (1.4) 1 wll 1 = 0.2 t. and replacing in the nonlinear 

terms the remaining W. . by their values obtained for / wtl/ = 0.1 t, a 
new system af linear t&rations is found. Solving this system gives the 

corresponding values of p and W. . . Proceeding in an analogous manner, a 

table is obtained from which oniJmay find by interpolation the required 

quantities for given values of the loading. 

It is obvious from the above that the error in the aij quantities will 

increase with every step. However, it will remain small, because 

10. .#f. ./a2 
dJZ* 

are not quantities of the same order of magnitude as wIr8fII/ 
i&e for this principal term the nonlinear part of the equation 

(1.4) has been evaluated exactly. Finally, system (1.4) may be solved by 

means of the usual method of successive approximations: for a given vaiue 

of p all the ‘ii may be determined from the linear theory, and the vii 

values found may be substituted in the F”$ then, solving the linearized sy 

system for mij, we find their improved values, etc., until the corrections 
obtained become negligibly small. However, for this process, the computa- 

tions are necessarily very cumbersome, since they must be often repeated 

and then again for every value of p. 
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The proposed method has the advantage of great simplicity. To esti- 

mate the accuracy attained and to reduce the error, this method may be 

combined with the above method of successive approximation, applying the 

latter, for example, after every ten steps in order to refine the 10.. 

quantities. The results of the calculations of the last step may ali; be 

compared with the results obtained by any other method, which will permit 

an estimate of the error incurred. Such an estimate is given in the 

following example of the problem of transverse bending of flexible panels. 

It shows the slow growth of the admissible error with increasing bending 

even for a step of 0.25 t. With increasing steplength, the error grows 

rapidly. The method may also be applied to the solution of other non- 

1 inear problems, such as the study of the behavior of shells after in- 

stability has occurred, nonlinear vibrations, etc. 

2. Bending of shallow cylindrical panels with freely supported edges. 

The basic equations for shallow cylindrical panels are obtained from 

(l.l), (1.2) by letting kl = 0, k2 = l/R where R is the radius of the 

cylinder. Placing the origin of coordinates at the center of the panel, 

for the boundary conditions of free support we have 

where 2a and 2b denote the length and the width of the panel. The condi- 

tion (2.1) will be exactly satisfied by letting 

Substituting (2.2). (2.3) in (1. l), (1.2) and applying to each the 

Bubnov method, after several transformations we obtain the relations: 
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p* = 5.50’2 (h’ + 1)2&1 + h”k (17.543 jIx + 14.035 jla + 2.807 ftl) - 

- 240.34 A* VII (111 + 1.5 iu f 1.5 Lf + f12 (0.5 Crr + 0.5 G2 - 2.25 Lf + 

+ 521V.5 t;11 + 0.5<21- 22.5 L2) 

A* If11 (5.5 CU + 15 G2 + 13.5 LL) + f12 CO.875 &1+ 0.5 G2 - 6.937 C21) + 

+ f2l f- 1.187<:l + 1.125 & - 4.187 c,,)] - kh* (O.l~lSS illf0.0934f~~ + 

+ 0.1368 ,fzr) - 0.0229 (A* + 1)2 Cl1 - 0.0687 (A* + 9)” tz = 0 

i,’ [f11(5.& + l3.3’;32 +l&) + flz (- 1.187C,11 - 4.187<12 + 1.125!&) + 

+ 121(0.87X11 - 6.93& + 0.501;21) - kh2 (0.4672/11- 1.0679f12 + 

+ 0.3271f21) - 0.0229 (X2 + I)*&1 - 0.0687 (9A2 + 1)‘2<21 = 0 

(2.5) 

(2.6) 

In these equations. 

fi* = 

k is a parameter 

Starting from 
the curvatures k 

for the curvature, q* a parameter for the loading. 

(2.41-(2.61, for given values of the parameters p* and 
and x we may determine the values of the parameters ci,, 

f ik, which characterise the state of stress and deformation of the panel. 

Expressions for the membrane stresses ox’, aye are deduced below, to- 
gether with those for bending moments ‘w,, My and deflection 46 at the 
center of the panel: 

t2 oxa = E - a, 
b2 =Y (2.7) 

where 

a = - 2n2f11 + 8x2f21, p = - 2~~~A~fll -j- 8~c~h2flg, M, z - D 

and 

Y = f=" [Cll@2 -f- v)+G2 (X2 4 sv) + r21w + VII‘ 

8 = $ yr2 &I(1 -i- vl.2) + Cl2 (9 + vh2) + 121p + 9v~“ll 

r, = Cl1 + Cl2 + <21 (2.9) 

3. NumericaX results and some deductions. The results of the computa- 
tions are shown in the graphs (Figs. 1. 2) and Table 1. These graphs 
show the dependence between load parameter p* and deflection parameter 
co of the center for x = 1 (Fig, 1) and h = 0.5 (Fig. 21, while Table 1 
gives the values of the coefficients in formulas (2.71, (2.8). 
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Fig. 1. 

llowing notation will For the purpose of the ensu ing discussion the fo 
be introduced (having in mind the square plate): 

Fig. 2. 

6 

bet pCL, cc, y,, c12’ be the values of p*, a, y, cl2 computed for given 
12 in accordance with the theory of average bending1 I]. 

Let pl*$ al, y1 6 12’ be the values of the same quantities computed 
for the same value’of 5 i1 by use of the above algorithm for A(‘,, = 0.25. 

Let p2*# a2, yz. Cl2 Wcorrespond to the same (,, with Liz having been 
l 

obtained on the basis of c12’ from the method of successive approximations. 

These last may be considered to be exact, since [12”has been determined 

accurately to the fourth decimal place. Finally, let pO*. aO, yO be the 

solution of the nonlinear problem when only the first term in expression 

(2.3) for the deflection function is retained, these quantities having 

been computed for the same value of the deflection at the center of the 

panel as p2*, . . . . yL. In Table 2, these quantities have been evaluated 

for the purpose of comparison. 

It follows from Table 2 that even for the fairly large steps (h(,, = 

0.25) selected for the algorithm in the Present problem, the correspond- 

ing values of c12’ are close to the exact values c12Mup to sufficiently 

large (ii( [il = 51. Hence, the algorithm for the solution of the system 

of nonlinear algebraic equations of Section 1 is very effective. Further, 

it is clear from a study of the Tables 2 and 3 that if, for the evaluation 

of deflections of order 2-2.5 times the thickness, the solution obtained 

by retaining one principal term in the expression for o gives satisfactory 

results, then the same solution is not quite satisfactory for the evalu- 

ation of the stresses. 

For deflections of the order of twice the thickness, it is more con- 

venient to apply the theory of average deflection [l I. since the correc- 

tion arising from the complete nonlinear theory is small and requires 

difficult computations. 
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0.484 11.43 0.055 0.055 1.349 1.349 
0.955 25.21 0.204 0.204 2.482 2.482 
1.404 43.10 0.413 0.413 3.281 3.281 
1.832 66.20 0.650 0.650 3.730 3.730 
2.240 95.33 0.891 0.891 3.861 3.861 

0.487 10.945 -0.014 -0.010 
0.971 22.4.6 0.081 0.092 
1.498 36.80 0.257 0.285 
1.883 55.52 0.475 0.534 
2.307 79.60 0.707 0.812 

1.406 
2.757 
3.857 

ii% 

1.406 
2.727 
3.773 
4.462 
4.m 

0.487 11.47 
0.981 21.52 
1.465 32.79 
1.930 47.39 
2.373 66.69 

I;*;$ 
0:085 
0.287 
0.513 

-0.075 
-0.039 

0.113 
0.353 
0.647 

f.385 
2.904 

$% 
6:189 

1.4il 
2.900 
4.214 
5.189 
5.783 

0.483 13.00 
0.983 22.54 
1.485 31.31 
1.972 42.06 
2.436 56.72 

-0.154 
-0.190 

-~%i 
0:311 

-0.130 
-0.170 
-0.C85 

0.120 
0.409 

1.290 
2.904 

t %i 

7:202 

1.364 
2.981 
4.573 
5.88i 
6.784 

0.475 15.52 -0.218 -0.169 1.134 i .269 
0.978 25.63 -0.329 -0.285 2.760 2.956 
1.495 32.67 -0.296 -0.284 4.656 4.814 
2.005 39.87 -0.135 -0.142 6.500 6.500 
2.493 49.95 0.099 0.119 8.052 7.779 

0.464 18.93 -0,276 -0.188 
0.966 30.78 -0.462 -0.370 
1.494 37.09 -0.499 -0.465 
2.028 41.18 -0.360 -0.410 
2.544 46.73 -0.124 -0.202 , 

- 

0.930 1.132 
2.489 2.825 
4.528 4.907 
6.722 7.005 
8.706 8.734 

P’ LY. B 

- 

- 
66.20 66.01 

131.20 129.95 
356.93 348.03 

Y 

Table 1. 

a 

Table 2. 

0 I 

II 
4 

i 

2 
ii 

63.20 

x 124.79 
329.08 

- 

I - L 

I.8223 
2.615 
4.00 

Table 3. 
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